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We consider the problem of the propagation of small sinusoidal waves in a liquid 
containing vapor bubbles. From an analysis of the dispersion relation, we show the region 
of values of the parameters of the two-phase medium, as well as the disturbance frequencies 
at which the velocity of propagation of the disturbances is described by Landau's formula 
[i]. We show in this study that the equilibrium state of the two-phase bubbling vapor- 
and-liquid medium will be stable only if a certain condition imposed on the volumetric content 
and the dimensions of the bubbles is satisfied. 

We analyze the influence of the heat exchange between the phases, the surface tension, 
the volumetric content and dimensions of the bubbles, and the frequency of the disturbances 
on the velocity of propagation and the damping coefficient. The asymptotic formulas obtained 
in this study enable us to estimate the velocity and the damping on the basis of simple 

analytic expressions. 

For unstable mixtures, on the basis of our numerical calculations and the analytic for- 
mulas obtained, we investigate the influence of various parameters of the bubbling vapor-and- 
liquid medium on the coefficient determining how fast the amplitude of the disturbances in- 

creases. 

It should also be noted that one purpose of the study is to refine the results obtained 
in [2], in which the heat exchange was taken into account by means of the effective Nusselt 

numbers. 

The problem of the propagation of disturbances in a bubbling vapor-and-liquid medium, 
disregarding capillary phenomena, wag considered in [3, 4]. The results of the latter study 
and the present one, with regard to the propagation of small disturbances, agree within the 

region of their common limits of applicability. 

I. Fundamental Equations. Suppose that we have a mixture of a liquid with spherical 

vapor bubbles. In order to take account of the heat exchange between the phases, we shall 
use the heat-conduction equation written within the framework of spherical symmetry within 
and around the bubbles, as well as the system of boundary conditions for this equation, taking 
account of the phase transitions. Therefore, in addition to the usual macroscopic parameters 
introduced in the mechanics of multiphase media [5], we shall introduce microparameters 
characterizing the density and temperature distributions within and around the bubbles. 

The system of macroscopic equations relatifig to the conservation of mass, of the number 
of bubbles, and of the momentum of the entire mixture for a plane single-velocity one-dimen- 

sional motion in the linear approximation has the form 

_ _  092 Ov rgrt . Ou Ov OP 1 0 (1  1)  
~ + p l ~  ~+P~o~=I ,  ~ +noTz=O, Po~+ ~-= 

( ~ , ) I = 4~a~ono], P = Pl + P2, 9i = Pia~, a 1 +  o:,. = 1 ,  a 2 = .--$- ga3n . 

The subscripts i = i, 2 refer, respectively, to the parameters of the liquid and the vapor; 
o Pi, Pi' v, p, n, and a are, respectively, the disturbances in the density averaged over the 

mixture and over the phase, the velocity, the pressure, the number of bubbles per unit mix- 
ture volume, and the bubble radius; I and j are the intensities of mass exchange between the 
phases, referred to a unit volume of the mixture and to a unit area of the interface between 
the phases. The parameters corresponding to the undisturbed state have an additional 

subscript 0. 
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We write the equations for the distribution of temperatures within and around the 
bubbles situated in a macroparticle with coordinate x: 

Plo ~ /It r ~ ~r \ ~ ( r >  rfl)), ( i .  2) 

aT', , a ( ~,r,  OT~ l 0,, 2 
$)020c2 p - ~  __ r 2 Or _ Or ] -{- ~ ( r < a 0 )  , 

w h e r e  r i s  t h e  m i c r o c o o r d i n a t e ,  f o r  w h i c h  we t a k e  t h e  d i s t a n c e  f r o m  t h e  c e n t e r  o f  t h e  b u b b l e ;  
T'. and ~ i  a r e  t h e  t e m p e r a t u r e s  and t h e r m a l  c o n d u c t i v i t i e s  o f  t h e  p h a s e s ;  c t ,  C2p, and c2V a r e ,  

z 
r e s p e c t i v e l y ,  t h e  s p e c i f i c  h e a t  o f  t h e  l i q u i d  and t h o s e  o f  t h e  v a p o r  a t  c o n s t a n t  p r e s s u r e  and 
a t  c o n s t a n t  v o l u m e .  Here  and h e r e a f t e r ,  t h e  p r i m e s  i n d i c a t e  m i c r o p a r a m e t e r s .  I t  s h o u l d  be  
n o t e d  t h a t  t h e  h e a t - c o n d u c t i o n  e q u a t i o n  h a s  b e e n  w r i t t e n  w i t h o u t  t a k i n g  a c c o u n t  o f  t h e  
compressibility of the liquid. 

The equations of state of the phases will be taken in the form 

----- Ot~ t 
Pt P~o + d~ (po _ p~• P2 = p~ -T2,  ( 1 .3 )  

where dx is the velocity of sound in the liquid (the equation of state of the liquid is 
written in the acoustic approximation); B is the gas constant. 

The equation of pulsating motion, disregarding the crowding of the bubbles, has the form 

0%, ( 2~ __~'~ / o 
(g'-~- -~ ~V1VPla/aO = ~,p.~-pl + To % )1P~~ ( 1 . 4 )  

where the wia are the velocities of pulsating motion of the phases on the interface; o is 
the coefficient of surface tension; ~i is the kinematic viscosity of the liquid. 

On the interface between the phases we specify the following boundary conditions: 

, , Or'l or'  
T~=T2=Ta=T~(p2), Ll~Tr--L~-r =if' 
o / Oa o [ Oa P2o ~-~- W2a)= -- = ]  ao), - -  PRO/- ~- Wla ) (r = 

(1.5) 

where I is the specific heat of vaporization; Ts(pa ) is the saturation temperature at pressure 

P2. 

Furthermore, 

or~lOr = 0 (r = 0). ( 1 . 6 )  

To close the system of boundary conditions for the heat-conduction equation, we must 
specify one more condition for T~. In those cases in which the temperature drops in the 
liquid close to the boundary between the phases take place at distances much smaller than 
the average distance between bubbles, we can set 

t rl=To ( r = o o ) .  

This condition means that the liquid far from the bubbles is taken as a thermostat (the 
condition of isothermality far from the bubbles). 

We consider the case in which the lengths of the temperature waves initiated by the 
radial motions of the bubbles are comparable to the average distances between bubbles. 
We assume that there is no return flow of heat between masses of liquid associated with 
adjacent inclusions (i.e., that all the bubbles for a fixed macroparticle are of equal rank). 
Thim condition, within the framework of spherical symmetry, can be written as 

OT~/Or " 0 (r = a,). ( 1 .7 )  

Am our a, we take the radius of a spherical cell [5], expressed by the formula 

_ t _ 1 / 3  a ,  = -o/~o.o . ( 1 . 8 )  
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According to the boundary condition adopted above, we assume that the mass of liquid associated 
with one bubble is situated in a sphere of radius a, and that on this sphere the heat flux is 
equal to zero (the condition of adiabaticity of a cell). 

For the values of the parameters on the interface between the phases, we write the 
Claperon-Clausius equation 

dP a l 
~r--f = L ( ' / P ~ - ' / P L )  (P~ = p~)" ( 1 . 9 )  

In solving the problem it is convenient to use the relation for p2 that was obtained 
from the equation of heat conduction by assuming homobaricity [5] : 

OP__~2 3 7 [ (i. i0) 
-- k Or /a] (7 ---- c2plCzv)" 

2. Solution of the Problem. On the basis of the above system (i.I)-(i.i0), we consider 
the problem of the propagation of small disturbances. We shall seek the solution in the 
form of a damped traveling wave: 

p,  v, w, a, n ~ exp [ i (Kx  - -  cot)], T '  = T A (r) exp [ i ( K x  - -  cot)], ( 2 . 1 )  

K = k + i8, dp = co~k, 

K i s  t h e  w a v e  v e c t o r  ( a  c o m p l e x  n u m b e r ,  w h e r e  ~ a n d  dp a r e ,  r e s p e c t i v e l y ,  t h e  d a m p i n g  c o e f f i -  
c i e n t  a n d  t h e  p h a s e  v e l o c i t y  o f  t h e  w a v e ,  w h i c h  a r e  d e t e r m i n e d  b y  t h e  i m a g i n a r y  a n d  r e a l  
p a r t s  o f  t h e  w a v e  v e c t o r ) .  

F r o m  t h e  c o n d i t i o n  t h a t  a s o l u t i o n  o f  t h i s  f o r m  e x i s t s ,  we o b t a i n  t h e  d i s p e r s i o n  
e q u a t  i o n  

K z . o o 3  . o  
o~ = Po (a~olpl~ + 3~.,ol,), r = 3/11 - -  pl0co'ao - -  4,plov~co - -  2z lao ,  ( 2 . 2 )  

t 

1-[ ---- i ~- in, z [H3Q (i - -  Z (1 - -  s)) J- 'l (i - -  s) (i  -~ H1r)l/+a2 o 

7P3o + iu'zs (2o/3%) [I]3QZ --  I] (1 -~ IIiY)]/o)a2 o ' 

= icoaSlu "~l.,~ x c j 0 / l ,  r = ( -  ~coa~/~,) 1/2, z :  ( -  o,. 

I i  1 A Y  th [Y (A --  1)] - -  1 I L  = Z c th  Z - -  t ,  • = E1/p~ 
= A Y - - t h [ Y ( A - - t ) ]  ' " 

• )~Jc3vP~ A . .  lla = = 1 / a ~ o ,  P.,,o = Plo + 2~/ao, 
o 0 s = Pzo /Plo ,  To  = T~ (P.~o), Q = 3 (1 - z )  (?  - 1),  *1 = 3 (?  - 1) z2~1 /~3 .  

For the distribution of the temperatures, the pressure in the bubbles, the bubble radius, 
and the velocity, we have the relations 

T~  .= Z ( l  - -  i /? )  [ (AY -~ l) e u  + (AY --  l) e -Y(R-A)] P_L2 
T o B [(AY -~ i) e Y(1-A) -~ (AY - -  l) e -Y(1-A)] P20' 

R = r / a  o ( l  <R <A), 

r f  = (l - l/v) [ ( ~ -  ~) ~h (z,~) l] ~' (n  < ,), 
To" 1l sh (Z) + ] 1'2o 

2 a 
P__t = _ [37/ [1  + i• (H~,Q ( 1 -  Z) + q ( i  + n , r ) ) / coao]}  T o ,  
P20 

a Pl { iu3[QH2Z--~l(l-[-II1Y)]/~ ] "K'Pl 
ao ~1' @I----- @ i .-F S l_~u3[ii3Q(l_7,)_~_n(l_~_li1y)]/o~a2o , v~--~'-p-- o. 

On the basis of (2.2), passing to the limit as ~ § 0, we obtain for the equilibrium 
velocity of sound the expression 

d e = [t /d~ + l/d2L ( i -  a,oD/(z20ao)]-I/2/(Z~o, 
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which is valid if the parameters of the medium satisfy the relation 

t /d; + 1 7 ~  (t - -  ohoDIohoao) >~ O. 

In the case when (2.3) is not satisfied, de = ~. Since we usually have 

~ I ,  DlOOel ~>~ I~20 
O c  i* 

6)2O 2p (~I0 

it follows that the expressions for dL and D can be simplified: 

: (t -- t/?) 070 PToCx ' 7 E~;, E = - -  

= 3(7 t~ p~176 ~ .  
" PToC 2p 

(2.3) 

(2.4) 
?P2o ' 

If we set p2o = pro, then the expression for d L coincides with the well-known formula 
obtained by Landau [i] for the velocity of sound in a vapor-and-liquid medium for low values 
of mass vapor content. Thus, the equilibrium velocity of sound in the liquid with vapor 
bubbles can be described by Landau's formula only when we can disregard the surface tension 
and the compressibility of the liquid. 

The velocity value obtained by formula (2.4) is small if the state of the vapor-and- 
liquid medium is not close to critical. For a steam-and-water mixture, for example, when 
p2o = 105 Pa, we have dL = I.i m/sec (D = 0.35"10 -4 m). Therefore in the expression for the 
equilibrium velocity, we can disregard the compressibility of the liquid, and for a fairly 
wide range of values of the parameters of the two-phase medium we can set 

d e = e L  (i - -  aloDl~zoao)'t ~ (~20aol~lo >1 D), d e = oo (~oao/~lo < D). 
510 

F o r  t h e  a b o v e - m e n t i o n e d  v a l u e s  o f  d L and  D, when ~2o ~ 10 - 2  ( w h i c h  i s  c h a r a c t e r i s t i c  o f  
bubbling media) and ao ~ 10 -3 m, the equilibrium velocity is infinite. 

3. Analysis of the Dispersion Relation. On the basis of the dispersion expression (2.2), 
we can analyze the stability of the equilibrium state of the medium with respect to small 
sinusoidal disturbances. The relation (2.2) must be regarded as an equation in m for real 
values of K. Using the argument principle, as it was used in [6], we can show that this 
equation for ~ has an imaginary root ~ = m'i (m' > 0), if 
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~20a0/~I0 < D. (3. i) 

Since in obtaining (3.1) we are looking for a solution in the form (2.1), the existence 
of such a root with a positive imaginary part means that the amplitudes of the disturbances 
increase beyond all bound as time increases. Therefore the equilibrium two-phase state is 
unstable if the condition (3.1) is satisfied. 

We give below the results of the numerical calculation, as well as analytic expressions 
for the variation of m', which characterizes the growth of the amplitude of the imposed dis- 
turbances as time increases (t' = i/~' is the time required for the amplitude to increase by 
a factor of e), as a function of the wave number K and of the parameters of the medium. 

Thus, for the existence of a finite velocity, and also for stability of the equilibrium 
state of the bubbling vapor-and-liquid medium, the values of the volumetric content and 
radius of the bubbles must satisfy the inequality ~2oao/alo ~ D. 

The parameter D, in general, depends on the bubble radius, since To = Ts(p2o), pmo = 
P~o + 2o/ao. However, the variation of temperature as the radius varies from 10 -3 to 10 -6 m, 
for most substances, is several degrees. Therefore we may assume that D depends only on the 
pressure plo. In Fig. 1 the regions lying above the straight lines correspond to the values 
plo = l0 s , 10 6 , and 10 7 Pa for a steam-and-water mixture (solid lines) and for a bubbling 
vapor-and-liquid mixture in nitrogen (dashed lines). As can be seen, for identical pressures 
p,o the region of values of the parameters e2o, do for which there exists a finite equilibrium 
velocity of sound (and the two-phase state is stable) in the case of nitrogen is much broader 
than the region for water. 

If we want the equilibrium velocity to be described by Landau's formula, the condition 
e2oao/~1o >> D must be satisfied, i.e., the values of the parameters e2o and do must lie far 
deeper inside the stability region. This can be ensured by passing to higher pressures, and 

also by choosing sufficiently large values of ~2o and do. 

It should be noted that if the condition of adiabaticity of a cell is replaced by the 
condition of isothermality and we take account of capillary effects, then the equilibrium 
velocity will be infinite, and therefore in such a scheme the bubbling vapor-and-liquid mix- 

ture will always be unstable. 

We shall give an estimate for the frequencies at which velocity values close to the 
equilibrium value will be realized. An analysis of the dispersion relation (2.2) shows that 

for this~ the condition 

]Z]<<~, [Y](A -- I) << I (3.2) 

must be satisfied. For most media the second condition is stronger, and this means that the 
lengths of the temperature waves initiated by the radial motions of bubbles are comparable 

with the distances between the bubbles. From (3.2) we have 

~/~ <<~[~ = ~I/~U,:~,/~~/~/~o - -  I) ,  t ,  = 2~/~, ( ~  = ~/a~), ( 3 .3 )  

t, is the characteristic time required for the temperature waves around the bubbles to tra- 
verse distances comparable to the distances between bubbles. In the case of water, for 
example, when a, = 10 -5 m, ~0 = 10-2, we have ~, = 102 sec -I, t, = 0.05 sec (• = 1.6"I0-7 m~/sec). 

We shall also give the asymptotic expressions for the phase velocity and the damping 
coefficient when the condition (3.3) is satisfied. The expression for ~ can be simplified 
i~ we consider that for most substances, over a wide range of the parameters being varied, 

we have the estimates 

O < Q < I ,  0<X<i, n~l, s<<t, IH2l<<qll +g~YI. 

Physically the meaning of the last inequality is that when there are phase transitions, the 
internal thermal problem becomes unimportant. After simplifying, we find 

[I = [YZ -~ ~(i + I]~Y)]/?p~oY 2. 

As can be seen from the results of investigations on the dynamics of steam bubbles as 
well as from estimates and calculations based on the dispersion relation (2.2), viscosity 
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effects are usually small, and in what follows, we shall disregard them. It should be noted 
that if (3.2) is satisfied, we must necessarily have 

o ., ~ <:<~ 20 : . , . .  fJlu(O'itO 

Then, taking account of the aforementioned simplifications, the dispersion relation will 
take the form 

(o ~ d~ ( t  - -  a~oD/a.2o% - -  iMo)/o~T), M (A -- 1) :~ (5A :~ + 6,12 -~- 3A -}- l) 
K " "  = 0~102 - -  | 5 ( A  3 -  | )  . . . .  " 

Hence, for frequencies satisfying the relation 

(o/O),r <<  I1 - -  %oDlo%aol/.11, 
we have 

d~ - - ~  (l--o~mD/a.,oao) ''~ (1 + 0 (os 6 = __i CeloM r176 
= 0~10 , - 2,  dL ( |  - -  o~loDIO~2oao) 3 2 (o'~ 

(%oao/O~.,_. > D), 
dp  -~ 2dl-" (eZl~176176 - -  I)1'~" ~ %~176 

aloM . . . . . .  ---~, lj = dL (%.oO/a"oao_ 1)1.,.,. 

(amao/a., o < D).  

( 3 . 4 )  

According to the second group of formulas in (3.4), as the frequency decreases, the 
phase velocity will increase beyond all bounds, while the damping coefficient will tend to 
zero, i.e., the low-frequency components of the disturbances will be propagated at higher 
velocities when the damping is low, which is also an indication of instability of the medium. 

Let us consider the range of frequencies satisfying the condition ]Y[ (A -- i) >> 1 for 
which the temperature drops will take place at distances much smaller than the average dis- 
tance between bubbles; then HI = i, and the expression for ~ takes the form 

H = [ y 2  ~ ~( i  + Y ) l / y P 2 o Y  2. 

Suppose, furthermore, that lYl >> i, IY2[ >> BIYI" The first condition means that the tempera- 
ture drops in the liquid takes place in thin layers near the interface between the phases. 
The last condition is stronger, and if it is satisfied, i.e., if 

>>,4: = 

the dispersion expression will have the form 

//2 ~o ..2.,2 2o~/ao ] - I  ]. 
0-- ~ = 0~10 {a,o/d~ + 3p~ [3yp~ o ( l  - -  ~IY)  - -  mo~ -o - -  

(3.5) 

(3.6) 

Then for frequencies much lower than the resonance Minnaert frequency [6], i.e., when 

= 3?p2o/p1oao, ( 3 . 7 )  

for the phase velocity and the samping coefficient, disregarding capillary effects, we have 

r = [O io/a, + v :,oO ,o/Vpo]' ', 
a = (i/2)3i2a2o~3d v (9~ (O)O)T) ~;2 (Px0 = P2o = Po)" 

If the volumetric content of the bubbles is not very small (a20 >> r o 2 
= ?po/Plodl) ,  t h e n  

( 3 . 8 )  

0 1,'2 
dp = d r  = (~po/p,oa~oa~ o) �9 ( 3 . 9 )  

It should be noted that the above approximations for the phase velocity (3.8) and (3.9), 
correspond to the condition of zero heat and mass exchange between the phases and coincide 
with the expressions for the velocity of sound in the liquid with vapor bubbles for the case 
of adiabatic behavior. When po = l0 s Pa and am = 10 -3 m, the estimates (3.5) and (3.7), for 
which formulas (3.8) and (3.9) are valid, yield 10 -3 sec -I S ~ S 10 4 sec -I for water. As the 
pressure po increases, and also as we pass to larger bubbles, this range will become broader. 
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For a phase velocity and damping coefficient close to the resonancefrequency (m ~ ~o), 
also disregarding the compressibility of the liquid, we obtain 

d~ = drl2e/( K2--i)]~/2,  ~ = %/@[2e( ]/2--1)1~/2 (3.  i0) 

(~ - ~(~T/~0),/~) 

For a broad range of values of the parameters ao and po, we usually have e << I. 

The next characteristic frequency beyond the resonance frequency (~o) is the frequency 
at which tbe phase velocity has a maximum (usually an anomalously high one). Analysis of 
formula (3.6) shows that the value of this frequency can be determined from 

~ (1 + ~) (~ = a~0/~,~0). 0)00 ( 3 . 1 1 )  

As the calculations show, in the range ~o $ w S woo there is an anomalously high damping of 
the disturbances, i.e., this range is a band of opacity. From (3.11) it follows that as the 
volumetric content of the bubbles increases, this region will become larger. 

For frequencies greater than Woo we can write the expression 

2 2 2 2 2 --1/'2 

3~.0d I ~ 
~)= 2 V~a------ ~ ( 0 ) 2 0 ) 2 ) 2 ~ ( ( t ) ( O r )  12 

(3.12) 

It should be noted that in obtaining the asymptotic formulas (3.8)-(3.12), we assumed 
that the characteristic frequencies m** and mo satisfy the relation m** << mo, from which it 
follows that the bubble radius is subject to the limitation 

a o >> a, = ~ i  (P~o/~TPo) I/~. (3.13) 

For a steam-and-water mixture, when po = l0 s Pa, for example, we find that ao = 10 -4 m. 
Consequently, the analytic formulas given above are valid for sufficiently large bubbles 

which satisfy the condition (3.13). 

Thus, for vapor-and-liquid mixtures with large bubbles (ao >> a,), there are four charac- 
teristic frequencies. For frequencies w ~ ~,, the velocities of propagation of the distur- 
bances can be described by formulas which are analogous for bubbling gas-and-liquid media in 
the case of "frozen" heat exchange. For small frequencies, when the temperature drops be- 
tween the phases take place at distances comparable to the distances between bubbles (m << w,) 
arid when the values of the parameters ao and ~2o correspond to the stable state of equilibrium, 
the phase velocity is close to the equilibrium velocity. In those cases when we can disregard 
the capillary effects, the equilibrium velocity is determined by Landau's formula. It should 
also be noted that for bubbling mixtures with ao = 10-4-10 -3 m, which are usually of the 
greatest practical interest, the equilibrium velocity is reached at very low frequencies. 

If the values of the parameters ao and ~2o in the region of unstable states lie suffi- 

ciently close to the boundary of this region, then as the frequency decreases from about the 
value ~ = m,, the phase velocity will increase beyond all bounds. However, if the values of 
the parameters ao and a2o lie sufficiently deep inside the region of instability, then the 
phase velocity will begin to grow earlier, at some value ~ = wo, which is usually much larger 
than ~,. For an estimate of ~o, we consider the dispersion expression in the frequency range 

and in addition, let 

p ~ o ~  << 2~/ao. 

Then t h e  d i s p e r s i o n  e x p r e s s i o n ,  i f  we d i s r e g a r d  t h e  c o m p r e s s i b i l i t y  o f  t h e  l i q u i d ,  can  be  
written in the form 

K ~ I ~  2 = t l d ~  ( Y I ~  - -  2,) ,  ~ ,  = (213)21a o. 

From an a n a l y s i s  o f  t h i s  e x p r e s s i o n ,  we f i n d  

~ = ( 2 ~ 2 , ) 2 ~ T .  
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The estimate so obtained is in good agreement with the numerical calculations. It should 

also be noted that the expression for us, to within a coefficient of 4, coincides with the 

frequency of the resonance caused by the capillary effects and the phase transitions for a 
unit bubble [6]. 

Figures 2 and 3 show the dispersion curves calculated for a bubbling steam-and-water me- 
dium when pzo = 10 6 Pa and ~2o = 10 -2 All the necessary thermophysical parameters have been 
estimated on the basis of [7]. Curves 1-4 correspond to bubble radii of ao = 10 -3 , i0 -~, 
10 -5 , and 10 -6 m. For radii of ao = 10 -3 , 10 -4 m the mixture is stable, whereas for ao = 

i0 -s, 10 -6 M it is unstable. On the graphs for the phase velocity (see Fig. 2) we have 

marked the characteristic frequencies calculated by the formulas given above. It can be 

seen that the curves confirm those characteristic features for the phase velocity and the 

damping coefficient which were stated earlier on the basis of the asymptotic formulas we had 
obtained. 

4. Investigation of Unstable States. As already noted above, formula (2.2), regarded as 

an equation for determining m for parameters corresponding to the unstable state, has an 
imaginary solution with a positive imaginary part (~ = e'i, ~' > 0). Figure 4 shows the 

variation of ~' as a function of the wave number K for a bubbling steam-and-water mixture 
when Pzo = 10 5 Pa. Curves 1 and 2 correspond to ao = 10 -3 and 10 -4 m, the solid curves to 

~2o = 10 -2 , and the dashed curves to ~2o = 10 -3 . An analysis of these curves shows that as 

the wave number K varies from zero to infinity, the parameter e' will increase from zero to 

some maximum value m=. If K is much smaller than some K=, which depends on the parameters 

of the two-phase medium, then for the relation between m' and K, disregarding the compressi- 
bility of the liquid, we can write 

~ '  : KdL(aloDla2oa o -- i)1/2/alO. 

As our estimate for K , we use the expression 

Koo = (ooccZlo/dL(aloD/a.,oao - -  t )  1 '2 
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If K increases further, beyond the value K~, there will be practically no further increase 

in ~'. As can be seen from the graphs, a decrease in the volumetric content, and also in 
the dimension of the bubbles, for fixed K, will lead to an increase in ~', the parameter 
determining how fast the amplitude of the disturbances increases. 

In our analysis of the stability of the equilibrium, it is most important to determine 
the maximum ~ , which in this case is the root of the equation 

37P.2oY2 o " ~ z o = = . + p l o ~ a o  + ~v lp l0o~- -  2 a / a  o O, Y ((0~/OT)1.2 ( 4 . 1 )  
r 2 + ~ (i + nlY ) 

The solution of this equation, satisfying conditions analogous to (3.2), has the form 

O)oo = ( t  - -  O~2oao/~ZloD ) 0)r/7~f. 

T h i s  s o l u t i o n  s a t i s f i e s  t h e  c o n d i t i o n  f o r  w h i c h  i t  i s  o b t a i n e d  i f  ( 1 -  ~ 2 o a o / ~ x o D )  << 1 ,  i . e . ,  
when t h e  p a r a m e t e r s  ~2o and  a o  l i e  s u f f i c i e n t l y  c l o s e  t o  t h e  b o u n d a r y  i n  t h e  r e g i o n  o f  i n -  
s t a b i l i t y .  When p , o  = 10 5 P a ,  a o  = lO - 3  m, and  a2o = 3"10  - 2 ,  f o r  e x a m p l e ,  we h a v e  t ,  = t '  = 
200 see (t' = iI~ ). 

o~ 

If a2o and ao lie sufficiently deep inside the region of instability, then, setting 

O 2 2 
paom a o <<2o/ao, ~i = i, we find from Eq. (4.1) that 

1"2 [1 + (1 + 4 (1 --  E*)/[')~ " ] '~ r  (F = X,~). (4.2) 
, coco = 4 (1  - -  X , )  

For plo = l0 s Pa, a o  = 10 -3 and I0 -~ m, respectively, we have t' = 50 and 0.02 sec. Hence 
we can see that for sufficiently coarsely dispersed media (ao ~ 10 -3 m), the characteristic 

times t', from the practical point of view, are much larger, and in many cases such media 
can be regarded as stable. Figure 5 shows the variation of ~ as a function of the bubble 
radius when Plo = 105 Pa; curves 1-3 correspond to volumetric=concentrations ~2o = i0 -x, 10-2, 
and 10 -3 , and the dashed curve corresponds to formula (4.2). If the values of the parameters 
of the bubbling mixture are not very close to the boundary of instability, and if the bubbles 
are not very small, then the solution of Eq. (4.1) is determined fairly accurately by formula 
(4.2). For very small bubbles 

ao-<< a** = (r, = (2/3) E~),- 

and for the root, we have 

~= = ( 2 ~ / p ~ o a X )  ' ~ .  

Thus, in bubbling vapor-and-liquid media, the effects resulting from the phase transitions 
and the capillary phenomena will lead to new theoretical features of the behavior of the 
bubbling mixtures. In particular, unlike bubbling gas-and-liquid media, a vapor-and-liquid 
bubbling mixture can be unstable. The tendency toward instability increases (i.e., e becomes 
larger) as we pass to more finely dispersed mixtures and to mixtures with small volumetric 
content of the bubbles. Therefore any very finely dispersed bubbling vapor-and-liquid mix- 
ture will be strongly unstable and consequently difficult to 'contain.' 

In conclusion, the authors wish to thank R. I. Nigmatulin for his useful comments and his 

valuable advice. 
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